Scientific article suggests that the Earth is, in fact, flat
By Sam Siomko, Staff Writer
It was long thought that the Earth, much like the maps which we used to navigate it, was flat. This theory stemmed from the only evidence that early civilization had.
They noticed that things did not always roll one way or the other, and the horizon looked pretty straight to them. So they concluded that the planet had to be flat. This was followed by theories of monsters and beasts that lurked on the edges of the map in the unexplored water, which caused enough fear to discourage voyaging for some time.
However, it took Aristotle to provide proof of a spherical Earth, and the theory spread around the globe. With the advent of space travel, people could now see for themselves that the Earth and other planets are indeed spherical.
But a recently published article on someone’s WordPress blog has set the scientific community alight. The internet researchers mused that maybe the Earth is still actually flat and scientists had it wrong this whole time.
They state that photos from space, such as the ones taken by NASA, show Earth as a circle instead of a sphere. They extend this to all other planets in our solar system: every image shows a circular planet instead of a spherical one.
This would put the eastern hemisphere on one side of the flat circle, and the western hemisphere on the other side, like a piece of paper. “Hemisphere” here is, of course, an antiquated term which refers to a spherical Earth, so the researchers suggested replacing it with the “right side” and the “left side” instead.
Since not everyone can see the Earth from space, the researchers also use more accessible examples to prove their point.
Planes, for instance, fly in a straight line without increasing or decreasing altitude to go around the supposed curvature of the Earth. If a pilot flew in a straight line on a spherical Earth, the researchers suggest, the plane would eventually crash into the curve.
And that supposed rounded horizon when viewed from an airplane is just the byproduct of the rounded edge of circular Earth.
Internet researchers from all over cited this article in their blogs, and soon the scientific community was bombarded with flat Earth supporters who were furious that this information had not been presented to them sooner.
“It would be really hard to get this information into a peer reviewed journal, because there are so many spherical-Earth conspirators in the scientific community,” said one flat Earth researcher.
“We’ll need to use our own experiences and opinions as fact for a while until someone decides to actually test our theory. Once that happens, we can use small bits of that article to support our claims.”
Since that statement was made, a few of the world’s most prominent geologists and physicists have published a paper with what they call “every bit of definitive proof of a spherical Earth known to humankind.”
This publication also includes a video of Earth rotating in space to show its spherical nature. But the original researchers who revived the flat-Earth theory is unwavering. “These formulas have to be fake, because there isn’t anyone out there who would understand something like this,” they state. “That’s what’s so convincing about the Earth being flat. It makes sense.”
However, some flat-Earth scientists have begun to question the movement.
“These internet research people sure use a lot of science in their claims, even though they say that science is usually wrong. They seem to know a lot about science, and we tend not to believe people who know a lot about science,” they claim.
“We might go back to believing that the Earth is round, because at least then we don’t need to throw out our globe beach balls.”
April Fools Day Special
Black Hole
Don't let the name fool you: a black hole is anything but empty space. Rather, it is a great amount of matter packed into a very small area - think of a star ten times more massive than the Sun squeezed into a sphere approximately the diameter of New York City. The result is a gravitational field so strong that nothing, not even light, can escape. In recent years, NASA instruments have painted a new picture of these strange objects that are, to many, the most fascinating objects in space.
Intense X-ray flares thought to be caused by a black hole devouring a star. (Video)
Although the term was not coined until 1967 by Princeton physicist John Wheeler, the idea of an object in space so massive and dense that light could not escape it has been around for centuries. Most famously, black holes were predicted by Einstein's theory of general relativity, which showed that when a massive star dies, it leaves behind a small, dense remnant core. If the core's mass is more than about three times the mass of the Sun, the equations showed, the force of gravity overwhelms all other forces and produces a black hole.
A video about black holes.
Scientists can't directly observe black holes with telescopes that detect x-rays, light, or other forms of electromagnetic radiation. We can, however, infer the presence of black holes and study them by detecting their effect on other matter nearby. If a black hole passes through a cloud of interstellar matter, for example, it will draw matter inward in a process known as accretion. A similar process can occur if a normal star passes close to a black hole. In this case, the black hole can tear the star apart as it pulls it toward itself. As the attracted matter accelerates and heats up, it emits x-rays that radiate into space. Recent discoveries offer some tantalizing evidence that black holes have a dramatic influence on the neighborhoods around them - emitting powerful gamma ray bursts, devouring nearby stars, and spurring the growth of new stars in some areas while stalling it in others.
One Star's End is a Black Hole's Beginning
Most black holes form from the remnants of a large star that dies in a supernova explosion. (Smaller stars become dense neutron stars, which are not massive enough to trap light.) If the total mass of the star is large enough (about three times the mass of the Sun), it can be proven theoretically that no force can keep the star from collapsing under the influence of gravity. However, as the star collapses, a strange thing occurs. As the surface of the star nears an imaginary surface called the "event horizon," time on the star slows relative to the time kept by observers far away. When the surface reaches the event horizon, time stands still, and the star can collapse no more - it is a frozen collapsing object.
Astronomers have identified a candidate for the smallest-known black hole. (Video)
Even bigger black holes can result from stellar collisions. Soon after its launch in December 2004, NASA's Swift telescope observed the powerful, fleeting flashes of light known as gamma ray bursts. Chandra and NASA's Hubble Space Telescope later collected data from the event's "afterglow," and together the observations led astronomers to conclude that the powerful explosions can result when a black hole and a neutron star collide, producing another black hole.
Babies and Giants
Although the basic formation process is understood, one perennial mystery in the science of black holes is that they appear to exist on two radically different size scales. On the one end, there are the countless black holes that are the remnants of massive stars. Peppered throughout the Universe, these "stellar mass" black holes are generally 10 to 24 times as massive as the Sun. Astronomers spot them when another star draws near enough for some of the matter surrounding it to be snared by the black hole's gravity, churning out x-rays in the process. Most stellar black holes, however, lead isolated lives and are impossible to detect. Judging from the number of stars large enough to produce such black holes, however, scientists estimate that there are as many as ten million to a billion such black holes in the Milky Way alone.
On the other end of the size spectrum are the giants known as "supermassive" black holes, which are millions, if not billions, of times as massive as the Sun. Astronomers believe that supermassive black holes lie at the center of virtually all large galaxies, even our own Milky Way. Astronomers can detect them by watching for their effects on nearby stars and gas.
This chart shows the relative masses of super-dense cosmic objects.
Historically, astronomers have long believed that no mid-sized black holes exist. However, recent evidence from Chandra, XMM-Newton and Hubble strengthens the case that mid-size black holes do exist. One possible mechanism for the formation of supermassive black holes involves a chain reaction of collisions of stars in compact star clusters that results in the buildup of extremely massive stars, which then collapse to form intermediate-mass black holes. The star clusters then sink to the center of the galaxy, where the intermediate-mass black holes merge to form a supermassive black hole.